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ABSTRACT 
 
With the continuing gain in computing power, bandwidth, and Internet popularity 

there is a growing interest in Internet communities.  To participate in these communities, 

people need virtual representations of their bodies, called avatars.  Creation and rendering 

of realistic personalized avatars for use as virtual body representations is often too 

complex for real-time applications such as networked virtual environments (VE).  Virtual 

Environment (VE) designers have had to settle for unbelievable, simplistic avatars and 

constrain avatar motion to a few discrete positions. 

The approach taken in this thesis is to use a full-body laser-scanning process to 

capture human body surface anatomical information accurate to the scale of millimeters.  

Using this 3D data, virtual representations of the original human model can be simplified, 

constructed and placed in a networked virtual environment.   

The result of this work is to provide photo realistic avatars that are efficiently 

rendered in real-time networked virtual environments.  The avatar is built in the Virtual 

Reality Modeling Language (VRML).  Avatar motion can be controlled either with 

scripted behaviors using the H-Anim specification or via wireless body tracking sensors 

developed at the Naval Postgraduate School.  Live 3D visualization of animated 

humanoids is viewed in freely available web browsers. 
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I. INTRODUCTION 

 

A. BACKGROUND 

In 1965 Gordon Moore, a cofounder of Intel Corporation, predicted that 

computing power would roughly double every 18 to 24 months [Ref. 1].  This prediction, 

known as “Moore’s Law”, has been remarkably accurate for nearly forty years, and there 

is every indication that it will continue to do so for the foreseeable future.  Computer 

graphical power, however, has been surpassing even Moore’s Law, approximately cubing 

every 18 to 24 months [Ref. 2].  Internet bandwidth is experiencing an evolution as well, 

with ADSL/DSL (Asynchronous Digital Subscriber Line/Digital Subscriber Line) and 

cable modems becoming more commonplace in homes and offices across America.  At 

the end of 2000, there were over two million American homes with DSL/ADSL and the 

growth rate is accelerating [Ref. 3]. 

With these computing power and Internet bandwidth gains, and the increasing 

popularity of the worldwide web, there is a growing interest in networked virtual 

environments (NVE).  A NVE is a software environment in which multiple users interact 

with each other in real-time, even though these users may not be physically in the same 

room, or even on the same continent.  These environments could consist of anywhere 

from two to thousands of people, possibly all interacting in the same environment.  Some 

examples are business conferences, engineering design forums, entertainment 

applications, distance learning and Department of Defense (DoD) simulations. [Ref. 4] 

When entering a NVE, each participant assumes a virtual persona, visually 

represented by an avatar, which includes a body structure model, motion model, physical 

model, and possibly many other characteristics depending on the application [Ref. 4].  

This thesis is an attempt to construct an articulated, anatomically accurate avatar and 

place it within a NVE, which may be viewed via freely available web browsers.  The 

avatar is the result of a full-body laser-scanning process and is accurate to a scale of 

millimeters [Ref. 5].  Consideration has been given to graphical complexity and 

bandwidth requirements, with the final model being extremely efficient and usable on 

today’s computers.  The avatar can be used in virtual applications.  Avatar movement can 
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be controlled via pre-scripted movements, such as the VRML H-Anim specification [Ref. 

6], or made to shadow the controlling person’s movement via real-time motion capture 

[Ref. 7]. 

 

B. MOTIVATION 

The motivation for this project is to provide virtual environment (VE) designers 

with the technology for “photo-realistic” avatars.  These avatars are a replica of their 

human source and are extremely lifelike since their movements are driven by either pre-

scripted human animation data or actual human input, and are scaled to the user to which 

the motion data pertains.  Three examples of possible applications are entertainment, 

collaborative meetings, and DoD areas of interest.  Specific details regarding possible 

scenarios are now examined. 

 

1. Entertainment – A Presence and Analysis Tool 

Presence is defined as the feeling of “being there.”  Imagine a home video game 

system where the input controller is no longer a joystick, keypad, mouse or other artificial 

device, but is instead the body of the gamer.  The movement of the user’s physical body 

is translated into a digital representation by a motion tracking system.  This 

representation is then connected to their on-screen avatar, which will then mimic every 

movement of the user.  The result is that the user moves their body in the real world in 

exactly the same manner they want their virtual alter ego to move.  For example, in a 

fighting game, the participant would be executing the moves in the real world, with the 

avatar mimicking their every movement and the virtual environment then responding 

appropriately.  One can easily imagine such an interface for several different genres, from 

role-playing to virtual sports. 

Also in the realm of entertainment, but on a slightly different tack is performance 

analysis.  Consider the example of virtual golf.  A user who is motion tracked can 

actually swing the golf club as they do in real life to play the game.  Not only can they be 

entertained from a gaming perspective, but they can also be instructed.  The application 

could monitor their swing, and point out weaknesses and areas of improvement.  They 
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could redo the shot under the exact same conditions, experiment with their swing, and 

observe the outcome.  Also, their swing could be recorded and played back for useful 

self-analysis. 

 

2. Collaborative Meetings – Its All in the Body Language 

The world community has long recognized the need for face-to-face meetings for 

effective communication.  Since a large part of the way humans communicate is via body 

language, interacting through text alone is not sufficient in many cases.  Subtle nuances 

of behavior that could be vitally important can be missed without certain non-verbal cues. 

Streaming video has been used as one solution to this problem but remains an 

expensive solution, both in terms of bandwidth and computer hardware.  Such traditional 

media is also limited in that the viewpoint is fixed.  The viewer can only see the action 

from the angle it was recorded, and is helpless to view the scene from another angle if 

circumstance or preference dictate otherwise.  Physical constraints may make it 

impossible or impractical to place cameras at certain vantage points. 

Avatars offer a more flexible alternative, with lower bandwidth requirements.   

Active participants are tracked, with their avatars mimicking their behavior in the virtual 

world.  Thus, all of the participants can see a shrug, a shake of the head, or a hand placed 

to the chin in thought.  Flexibility is provided by complete virtual camera control.  All 

participants can place their viewpoint anywhere they wish and zoom in or out.  

Engineering and architectural design collaborative sessions, distance learning and 

business meetings are examples of this type of application. 

 

3. DoD Areas of Interest – Cutting-Edge War Fighting and Training 

The DoD has long been the largest developer of large networked virtual 

environments, with the goal of training personnel more effectively and economically 

[Ref. 4].  Simulator Networking (SIMNET) [Ref. 8] and the Distributed Interactive 

Simulation (DIS) protocol [Ref. 9] are examples of DoD interest in this area.  To date, the 
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use of human entities or dismounted infantry (DI) has been limited in most high-

resolution virtual simulations [Ref. 10]. 

With the use of realistic avatars, the military simulation role may be expanded to 

include action at the individual soldier level, vice incorporating only large-scale troop 

movements.  Networked virtual rehearsal becomes possible, thereby eliminating 

geographical separation difficulties between command and troops.  Rehearsal can be 

done with less bandwidth and more securely than current methods. 

Currently, physical descriptions with accompanying distinguishing physical 

feature descriptions are part of every military service record.  This information could also 

include laser scan data.  Such data would describe their appearance as well as their 

physical dimensions down to the millimeter.  Besides being useful as a means of accurate 

identification, this data would also be available for use in creating personalized avatars.  

The scan output could be called up to render every member in 3D.  One possible 

application would be to drive their avatars with motion-tracking sensors.  In this manner, 

commanders may view a battlefield simulation as it unfolds, with their view unlimited by 

physical constraints, either taking a “gods-eye” view or zooming in to one specific 

combatant according to their preference.  The mission may also be recorded and played 

back for debriefing, and the playback camera position would not be limited to the original 

position when the data was recorded, thus giving a distinct advantage over current 

conventional recording and playback methods. 

 

C. OBJECTIVES 

The objective of this research is to construct human replica avatars for use in 

virtual environments using data obtained from a whole body laser scanning process.  To 

achieve this objective, the following areas are addressed: 

• The complexity of laser scan data must be reduced so that the avatars may be 

rendered efficiently with current computing technology. 

• The data must be translated into one or more universal formats that are 

platform independent and will therefore run under several different operating 
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systems.  Optimally, the chosen file format will have open source code that is 

freely distributed. 

• The data obtained from the scanning process is a “data soup” in that it is a 

single figure with no segmentation.  The output data must be organized to 

segment the body in order to provide for full articulation and realistic 

movement. 

• The avatar must be built from its body segment building blocks, be physically 

accurate and visually compelling. 

• Avatar movement must be possible through scripted (pre-defined) motion, and 

also through real-time input, such as over a network from motion trackers. 

 

D. THESIS OUTLINE 

This chapter describes the background, motivation and objectives to be achieved 

in order to produce 3D avatar replicas from laser scan data.  Chapter II contains a concise 

problem statement for this thesis.provides an overview of 3D human scanning 

technologies with an in-depth look at the 3D laser triangulation scanning method chosen 

for this research.  Chapter III provides an overview of 3D human scanning technologies 

with an in-depth look at the 3D laser triangulation scanning method chosen for this 

research.  Chapter IV discusses the Virtual Reality Modeling Language (VRML), how 

VRML and Java work together, humanoid animation and human motion tracking.  

Chapter V discusses initial development efforts to include scan complexity and file 

format issues, organizing laser scan data into body segments, selection of a 3D rendering 

engine, scripted avatar behaviors, and communicating real-time motion tracking input 

over networks.  Chapter VI provides thesis conclusions and recommendations for future 

or follow-on research. 
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II. PROBLEM STATEMENT 

 

A. INTRODUCTION 

This chapter defines the problem examined for this thesis and offers a proposed 

solution.  Further, the focus of this research is discussed, and design issues that were 

considered during model implementation are addressed. 

 

B. PROBLEM STATEMENT 

With the explosion of the worldwide web, people from all over the world are 

interacting electronically with each other in ever-increasing numbers [Ref. 3].  

Networked virtual environments (NVEs) provide one form of electronic interaction 

among humans.  A NVE is a software environment in which multiple users interact with 

each other in real-time, even though these users may not be physically in the same room, 

or even the same continent [Ref. 4]. 

When entering a NVE, each participant assumes a virtual persona, called an 

avatar, which includes a graphical representation, body structure model, motion model, 

physical model, and possibly many other characteristics depending on the application 

[Ref. 4].  While the film industry has enjoyed much success digitizing humans, much 

processing time is required to create highly complex models that are unable to be 

rendered over networks with real-time interaction.  Past solutions that have allowed real-

time interaction have compromised on avatar quality, resulting in overly simplified 

models that reduce virtual reality effectiveness by decreasing the user’s sense of 

presence.  Virtual environment applications that require exact dimensions of the human 

body may also suffer, as simplistic avatars often bear little resemblance to the original 

model in both appearance and measurement.  Poorly sized models can result in lessening 

the user’s sense of presence, since the avatar’s limbs may appear to go through virtual 

objects, including the avatar itself.  Manual exercises, such as reaching out and 

manipulating an object become difficult if avatar dimensions do not equal the controlling 

human’s dimensions.  
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C. PROPOSED SOLUTION 

The proposed solution for these challenges is to develop a high-resolution, 

dimensionally accurate human model, or avatar with a realistic appearance.  The model 

must be efficient enough to run easily on today's computers, and scale well so that many 

avatars could be rendered simultaneously while maintaining a satisfactory frame rate.  

Further, avatar control through either pre-scripted actions or real-time updates via 

networking must be supported.  Finally, the system must be platform independent to 

permit hardware and software flexibility. 

 

D. RESEARCH FOCUS 

The focus of this research is to build a fully articulated human model from laser 

scan data for use as an avatar.  The model must be simplified, and then built using an 

international standard for networked humanoid animation, Humanoid Animation 

Specification 1.1 (H-Anim 1.1).  The H-Anim 1.1 canonical exemplar Nancy.wrl, written 

in Virtual Reality Modeling Language (VRML), is used as an avatar foundation.  Using 

H-Anim 1.1 and VRML provides the capacity for pre-scripted avatar control.  

Additionally, Java and VRML must be made to efficiently work together to provide the 

capability of real-time networked avatar control.  Using Java and VRML ensures 

platform independence.  The implementation must be able to accept quaternion inputs to 

be compatible with the Magnetic Angular Rate Gravity (MARG) motion tracking sensors 

developed at the Naval Postgraduate School. 

 

E. DESIGN CONSIDERATIONS 

The most significant design consideration is how to transform the "data cloud" 

obtained from laser scans into a fully articulated, segmented avatar.  Multiple proprietary 

and non-proprietary data conversion methods must be examined before an 

implementation is chosen.  The selected implementation first uses Cyberware 

Laboratories "Decimate" software package to reduce model complexity and provide file 

format translations, then uses "Maya" from Alias/Wavefront for avatar segmentation. 
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Other major design considerations are:  choosing which scanning method to use to 

capture body surface information; constructing the avatar using Nancy.wrl; implementing 

networking capability via DIS-Java-VRML; and providing for quaternion input for 

networked control. 

 

F. SUMMARY 

This chapter defines the problem addressed by this research and offers a proposed 

solution.  The focus of this thesis is discussed, and design considerations are examined. 
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III. 3D SCANNING OF HUMANS 

 

A. INTRODUCTION 

This chapter provides an overview of the various 3D scanning technologies 

available at the time of the writing of this thesis.  An in-depth discussion of human laser 

scanning follows, as it is the 3D scanning method chosen for this research. 

 

B. METHODS FOR 3D SCANNING OF HUMANS 

Although various 3D scanning methods have been available for the last two 

decades, recent advances in image sensing have increased their speed and accuracy 

tremendously [Ref. 11].  An overview of current human 3D scanning technologies 

follows. 

 

1. Stereoscopic Vision Scanners  

Stereoscopic scanning is a passive optical technique.  Two or more digital images 

are taken from known locations.  These images are then processed to find correlations 

between objects in the images.  Figure 1 illustrates the principles of stereoscopic vision.  

Points a, b and c represent common features seen from two separate viewpoints. 

 
Figure 1.  Simple Optical Triangulation. 

Each viewpoint has both a focal distance and angle.  The two different distance/angle 

combinations are used to calculate the distance to the common elements.  Human 

binocular vision works in the same manner.  The further away the common elements, the 

more the two separate focal distance/angle pairs will agree.  As the object moves closer 
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relative to the viewer, focal angles between the two vision sensors vary increasingly, 

making possible a distance estimate. 

In theory, this method requires very little hardware:  at the minimum just two 

cameras and a computer to process the images.  In reality, however, correlations between 

images are often difficult to ascertain, necessitating the use of special light projectors that 

add to both system complexity and cost.  Furthermore, with current computing power 

processing the photographic images can take ten minutes or more, and the resulting 

image quality is still vastly inferior to that obtained with laser-based systems.  Image 

quality can be improved through the use of higher-resolution cameras, but at the expense 

of considerably longer processing times and hardware costs. [Ref. 12] 

 

2. Moire Projection Scanners  

In Moire projection scanning, a series of structured light patterns are projected 

onto the object to be digitized.  The shape of the object causes the base pattern to be 

distorted from its original design.  By analyzing this distorted light pattern the shape of 

the object is calculated, and x-y-z coordinates are then produced.  Figure 2 below is an 

example of a typical Moire pattern on an object. [Ref. 13] 

 
Figure 2.  Moire Light Patterns. 

Moire scanning has several disadvantages.  The object must be lit solely by the 

capturing light source, as bright ambient light disrupts the contrast of the pattern and 
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interferes with the resolution of the scan [Ref. 13].  Also, scan quality depends on the 

color of the object, possibly resulting in large scan errors and reduced resolution.  

Although some of the best Moire scanners can offer fidelity comparable to laser 

scanning, scan time is greatly extended and the units are more costly than their laser 

counterparts [Ref. 12]. 

 

3. Time-of-Flight (TOF) Scanners 

These scanners use a type of laser scanning based on the technique of Laser 

Imaging Detection and Ranging (LIDAR).  Distance is measured by comparing the phase 

of the returned laser beam to the original, allowing for very accurate scanning of very 

large objects.  Figure 3 graphically depicts the principles of time-of-flight scanning. [Ref. 

14] 

 
Figure 3.  Time-of-Flight Laser Scanning. 

Unlike triangulation scanning, TOF scanning accuracy remains constant 

regardless of the distance from the scanner.  This makes TOF scanners ideal for large 

objects.  Unfortunately, only geometry information is captured and the object’s texture 

information is not acquired.  Additionally, TOF scanning time is much slower than laser 



14 

triangulation.  With current technology, TOF scanning is not practical for the fast 

digitization of small and medium-size objects. [Ref. 12] 

 

4. Laser Triangulation Scanners  

Laser triangulation is a stereoscopic technique that calculates distances to an 

object by means of a video camera and a laser light source.  Figure 4 is a schematic 

representation of the laser triangulation process.  A laser beam is reflected from a mirror  

 
Figure 4.  Laser Triangulation Scanning. 

onto the object to be scanned.  The laser light is scattered by the object and is picked up 

by the detector, in this case a video camera.  Since the triangulation distance and 

transmitted light angle are known, the distance to the object may be calculated from the 

received image using basic trigonometry. 

This method is fast when compared with other scanning methods.  Whole body 

scan times are on the order of seconds, and are accurate down to the millimeter.  Texture 

capture is also possible, allowing for highly detailed scan output.  The end product is a 

lifelike, believable digital representation of the original object. 
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C. THE CYBERWARE WHOLE BODY SCANNING PROCESS 

1. System Background 

The whole body laser scanning platform chosen for this research was Cyberware 

Laboratory Incorporated model WB4 triangulation laser scanner.  This platform was 

chosen primarily due to the superiority of laser triangulation scanning for avatar 

purposes. 

 A complete body scan takes approximately 17 seconds, and captures both x-y-z 

coordinates and surface textures.  Figure 5 shows the Cyberware WB4 body scanner. 

 
Figure 5.  Cyberware Scanner Model WB4.  From Ref. [5]. 

2. System Operation 

Four yellow scanning heads are used to provide redundant data overlap to 

minimize the possibility of the subject inadvertently masking parts of their body from the 

lasers and thus preventing detection of those coordinates. These four scanning heads are 

mounted on vertical rails.  A separate platform to support the subject allows for 

independent alignment of the heads.  The scan begins with the heads at their topmost 

position.  The heads travel down the rails, capturing body coordinate and Red-Green-

Blue (RGB) texture information in one pass, which takes approximately 17 seconds.  

[Ref. 15] 
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The laser scan process is controlled via a computer graphics workstation.  Scanner 

output is a “data cloud” of points, which form vertices for the rendering triangles.  The 

resulting model is a single figure, without segmentation of any kind.  It is in *.ply 

(Alias/Wavefront) format, which is in the public domain. This allows for easy file 

inspection, and for the possibility of constructing custom file translators.  Cyberware has 

translators available that convert the scan data into the following file formats:  3D Studio, 

Digital Arts (SGI), DXF, IGES 128 NURBS, MOVIE.BYU (SGI), STL, SCR (SGI Mesh 

and Slice), ASCII, IGES (106, 110, 112, 124), Inventor, OBJ, Echo and VRML. [Ref. 16] 

 

D. SUMMARY 

This chapter discusses the methods, advantages and disadvantages of various 

technologies for 3D scanning of humans.  Additionally, the whole body scanning system 

used for this research is examined in detail. 
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IV. RELATED WORK 

 

A. INTRODUCTION 

This chapter provides background on Virtual Reality Modeling Language 

(VRML), and on how VRML and Java work together.  Further, it examines the 

Humanoid Animation 1.1 Specification (H-Anim 1.1 spec) and its canonical example, 

Nancy.wrl.  Finally, various methods of human motion tracking are discussed, including 

a discussion of the inertial and magnetic limb segment trackers developed at the Naval 

Postgraduate School. 

 

B. VIRTUAL REALITY MODELING LANGUAGE (VRML) 

VRML provides a standard, platform-independent method of rendering 3D scenes 

across the Internet.  It is a 3D scene description language for specifying virtual worlds.  

VRML supports both static and animated 3D/multimedia objects.  VRML applications 

can imbed hyperlinks to many popular digital multimedia file types.  The VRML 

specification is International Standards Organization (ISO) specification ISO/IEC 14772-

1.  Sample VRML output and source code is shown in Figure 6. 
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Figure 6.  Example of Simple VRML Source Code and Output.  From Ref. [17]. 

VRML scenes are constructed using nodes.  These nodes are organized in a 

hierarchical fashion into a directed acyclic graph, or scene graph.  VRML files end with 

*.wrl, or *.wrz if the file is gzip-compressed.  The main method for the user to interact 

with a VRML world through a browser is via point and click.  Thus VRML world content 

can contain embedded links just like traditional HyperText Markup Language (HTML).  

Typically VRML viewers, or browsers, are installed as plug-ins into popular 2D web 

browsers.  [Ref. 17] 

Four main components may be contained in a VRML file:  the VRML header; 

Prototypes; Shapes (geometry and appearance), Interpolators, Sensors, Scripts; and 

Routes [Ref. 18].  Of these components, the only one required is the VRML header.  

Prototypes (PROTOs) are a powerful feature that provide for user-defined nodes, 

significantly increasing language extensibility.  PROTOs may be combined into libraries, 

and are referenced using an external prototype (EXTERNPROTO) command, allowing 

for extensive code reuse.  Shape nodes can contain both geometry and appearance nodes.  

Geometry nodes contain information on how the 3D object is constructed, and may be 
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primitives such as a cylinder, cone, cube, or sphere, or may be text and indexed face sets.  

Appearance nodes describe how 3D objects look, and may include the object's color, 

texture, and transparency level.  Interpolators allow for key frame animation.  Sensors are 

the means by which the user interacts with the virtual world.  Script nodes provide an 

interface for the VRML world to interact with a program script, such as Java or 

JavaScript.  This ability for VRML to connect with powerful programming languages 

provides much flexibility, and is crucial for performing complex animations and network 

communication.  Finally, routes define connections between nodes and fields, allowing 

for pre-defined events to be passed along the route to initiate program actions or 

animations. 

 

C. VRML AND JAVA WORKING TOGETHER 

By combining the authoring abilities of VRML with the programming resources 

of Java, a powerful hybrid is created that is more than the sum of its parts.  Simple 3D 

content creation can be married with complex animated behaviors to give intricate 

results. 

VRML and Java communicate via Script nodes, which contain Java functionality.  

Script nodes appear in the VRML file, and allow for connecting Java variables to VRML 

fields.  Java classes must import vrml.* class libraries contained in the DIS-Java-VRML 

package in order to provide type conversions between Java and VRML.  To interface 

properly with the VRML browser, Java classes used by Script nodes must extend the 

vrml.node.Script class.  The basic Script Node interface is shown in Figure 7.  [Ref. 17] 

 
Figure 7.  Script Node Interface.  From Ref. [19]. 
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The data type "exposedField" indicates that the associated variable has public access, 

whereas the "field" data type provides private access to the respective variable.  The 

exposedField data member "url" contains the location of the java class file.  This location 

may be locally on the hard drive or the Internet.  For robustness, several urls may be 

entered so if the browser cannot find the named file in the first location, it will 

automatically look in the next location.  The fields "directOutput" and "mustEvaluate" are 

hints to the browser on how to optimize performance.  If directOutput is set to FALSE, 

the script only passes events and does not modify VRML nodes directly.  Conversely, 

when directOutput is TRUE the script has permission to modify VRML nodes via the 

respective fields.  If mustEvaluate is FALSE, the browser may postpone updating for 

rendering optimization.  Setting this value to TRUE forces the browser to update when 

fields are modified.  The data types "eventIn" and "eventOut" are events.  Events are 

what provide VRML scenes their interactivity and fluidity.  Events are time-stamped 

values of data types, and eventIn data types must match exactly the eventOut data types.  

When a pre-defined event is triggered, the value of the variable is sent (along with a time-

stamp) from the eventOut connection to the associated eventIn connection. 

 An example is shown in Figure 8.  Upon starting the VRML scene, the associated 

java class identified by the script node's "url" field is accessed, and its public method 

"initialize()" is called automatically.  In this method, the fields passed by reference from 

the VRML file are connected to the "eventIn".  The programmer may also perform any 

initialization that is deemed necessary, such as positioning or content changes.  When the 

user activates the TouchSensor "ClickTextToTest" by clicking on the text with the 

mouse, an event and time-stamp is sent from touchTime's eventOut to the script node's 

eventIn "startTime".  This calls the script node's pubic method "processEvent".  The 

programmer can then perform any java functionality that is desired, and modify the fields 

passed in by reference accordingly.  In this example, both the content and position of the 

text string is modified.  [Ref. 17] 
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Figure 8.  Example Script Node and Java Interaction.  From Ref. [17]. 

 

D. THE HUMAN ANIMATION 1.1 SPECIFICATION 

The Humanoid Animation Working Group of the Web3D Consortium developed 

the H-Animation 1.1 spec.  The working group states the following charter [Ref. 20]: 

Our aim is to specify a way of defining interchangeable humanoids and 
animations in standard VRML 2.0 without extensions. Animations include 
limb movements, facial expressions and lip synchronization with sound. 
Our goal is to allow people to author humanoids and animations 
independently… 

Although originally restricted to VRML 2.0, the working group's goal has grown to 

providing virtual humanoid form and behavior regardless of the authoring tool used, and 

allowing for the interchangeability of virtual humanoids.  No assumptions were made 

concerning the application that would use the humanoids.  One example of the 

specification's flexibility is its appearance in High Level Architecture (HLA), where it 

has been developed as a Federation Object Model (FOM) [Ref. 21]. 

 The H-Anim 1.1 spec has as its root a single Humanoid node.  This node serves 

the following purposes: 
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• Stores human-readable data about the humanoid such as author and copyright 

information. 

• Provides a top-level Transform field for positioning the humanoid in the 

environment. 

• Stores references to all the Joint, Segment and Site nodes. 

• Serves as a "wrapper" for the humanoid. 

Joint nodes are arranged in a strictly defined hierarchy.  They may contain other 

joint nodes, or segment nodes.  Segment nodes describe the portion of the body 

connected to the associated joint, and may contain Site nodes and Displacer nodes.  Site 

nodes contain location information relative to the segment, and can be used for placing 

clothing, jewelry, or other items on the segment.  Site nodes may also be used as a 

"manipulator handle" for inverse kinematics applications.  Displacer nodes are simply 

grouping nodes, allowing the programmer to identify a collection of vertices as belonging 

to a functional group for ease of manipulation. [Ref. 20] 

 The H-Anim 1.1 Spec defines the "at rest" position, which specifies all joint 

rotations to be zero.  Additionally, it specifies that the origin be located between the feet 

of the humanoid at ground level, and that the humanoid face the +z direction, with +y 

being up and +x to the left of the humanoid.  Just as important, the specification provides 

naming conventions for 94 joints and their associated segments, allowing for an 

extremely complex avatar (see Figure 9). 
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Figure 9.  H-Anim Spec 1.1 Hierarchy.  From Ref. [20]. 
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E. NANCY:  THE H-ANIM 1.1 STANDARD 

Nancy.wrl was chosen as the foundation on which to build the avatar used in this 

research, and is the canonical example of H-Anim 1.1.  The author of Nancy is Cindy 

Ballreich, who grants permission for its non-commercial usage with proper credit and use 

of the 3Name3D name and logo.  In the case of this thesis, Nancy was fundamentally 

modified such that maintenance of the 3Name3D name and logo would have proven 

challenging.  Cindy Ballreich kindly granted permission for the use of Nancy for this 

research without the company name and logo. 

Nancy contains 17 joints, 15 segments and four default viewpoints.  Four pre-

scripted behaviors are included:  stand, walk, run and jump.  The user clicking on the 

appropriate text inside of the VRML world activates these behaviors.  See Figures 10-13. 

 
Figure 10.  Nancy Demonstrating the Stand Behavior. 
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Figure 11.  Nancy Demonstrating the Walk Behavior. 

 

 
Figure 12.  Nancy Demonstrating the Run Behavior. 
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Figure 13.  Nancy Demonstrating the Jump Behavior. 

 

F. HUMAN MOTION TRACKING TECHNOLOGIES 

This section provides an overview of some of the human motion tracking methods 

available at the time of this research.  The objective is not to undertake an exhaustive 

study of the field of motion tracking, but to discuss some of the more prevalent 

technologies and their respective limitations. 

 

1. Mechanical Trackers  

Mechanical tracking is capable of not only tracking the movement of the user, but 

also of permitting the virtual environment to make itself felt through the use of haptic 

feedback.  Since mechanical tracking is relatively accurate, much research has been done 

in using mechanical tracking as a calibration standard for various other tracking systems 

[Ref. 22].  Mechanical tracking can usually be categorized into of one of two forms:  

body-based and ground-based.  [Ref. 7] 

Body-based mechanical tracking is performed by having the user wear a 

mechanical frame, or exoskeleton (see Figure 14).  Angle measuring devices, called 
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goniometers, are located at exoskeleton joint locations.  By measuring the joint angles of 

the exoskeleton, user limb orientation is obtained.   

One disadvantage of mechanical tracking is that since only the mechanical frame 

is tracked, errors are introduced if the exoskeleton shifts position on the body.  Also, 

goniometer alignment with the joints is difficult.  The goniometers are located externally 

to the joint, and are therefore displaced from the joint by some offset amount.  This offset 

must be taken into account since it can introduce orientation errors.  [Ref. 7]  

Another disadvantage of mechanical tracking is encumbrance.  Not only must the 

user bear the weight of the exoskeleton, but it may also be impossible to obtain certain 

positions due to the size or shape of the device.  These difficulties tend to detract from the 

user’s sense of presence, and severely limit the scope of the user’s interaction with the 

virtual world.  Although accurate and relatively inexpensive, mechanical tracking of 

several users in a single, shared volume is problematic due to both interference of the 

mechanical linkages and limited range.  [Ref. 7] 

 

2. Magnetic Trackers  

For real-time applications, magnetic tracking is the most prevalent.  Possessing 

reasonable accuracy with little or no obstruction problems, these relatively inexpensive 

systems track both segment position and orientation with body-mounted sensors that 

measure a spatially varying magnetic field. 

Since the systems are magnetic, they possess disadvantages common to any 

magnetic-field device.  As sensor distance from the source increases, magnetic field 

strength decreases in power inversely with the square of the distance.  This effectively 

limits the useful range of magnetic tracking, usually to less than ten feet.  Additionally, 

orientation and position errors due to distortions of the spatial magnetic field increase 

with the fourth power as the source distance increases.  This results in a non-constant 

error that varies according to sensor position and orientation relative to the source.  

Further, nearby metal objects can interfere, causing permutations and even obstructions 

of the magnetic field.  Another disadvantage to magnetic tracking is latency.  Vendor 

latency data varies enormously, depending on the application.  Finally, electrical 
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components generate their own magnetic field, which may induce noise and erratic 

magnetic field behavior.  [Ref. 22] 

 

3. Optical Trackers 

Optical tracking is quickly catching up to magnetic tracking in terms of 

popularity.  Currently, the main application of optical tracking is animation requiring 

extensive off-line processing.  It has been used in few real-time applications.  The film 

industry relies on this technology almost exclusively, as it is highly reliable under 

controlled conditions. 

Since optical tracking depends on various light sources, the systems are highly 

susceptible to interference from other light sources near the same frequency.  Also, since 

detection of optical sensors requires line of sight (LOS) the systems are vulnerable to 

occlusion, making tracking of multiple people in a common work volume difficult.  

Further, some types of light severely limit the range of some optical tracking systems. 

Optical tracking systems fall into one of three categories.  Image-based systems 

track position and movement by using multiple video cameras to track pre-selected 

sensors attached to the user.  Pattern-recognition systems sense the distortion of a 

projected pattern of light to track position and orientation.  This is a motion analog to 

Moire scanning which was discussed earlier in this thesis.  Structured light and laser 

systems have been promising, but thus far have not enjoyed the attention of researchers to 

the same extent as the other optical tracking systems. [Ref. 7] 

 

4. Acoustic Trackers  

Acoustic, or ultrasonic trackers provide reasonable update rates and accuracies, 

and are less expensive than magnetic trackers.  However, just as magnetic trackers were 

limited by the underlying physics of magnetism, acoustic trackers are limited by the 

physics of sound.  Although ultrasonic systems have longer ranges than magnetic 

systems, they must maintain line of sight making obstruction and shadowing a problem.  

The range of the system is dependent on wavelength.  If wavelength is too short, acoustic 
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interference is minimized but range is minimized as well.  On the other hand, if 

wavelength is too long, latency becomes unacceptable and distance resolution suffers.  

The middle frequency band that remains is susceptible to acoustic interference from 

metallic objects, in addition to the echoes and reflections to which all sound is vulnerable.  

[Ref. 24] 

 

5. Inertial and Magnetic Tracking 

Inertial and magnetic tracking is one of the newer motion tracking technologies.  

Although it has been used for tracking user head positions in various virtual reality 

applications, until recently it had not been used for full body tracking.  Professor Eric 

Bachmann at the Naval Postgraduate School developed one of the first platforms for 

using Magnetic Angular Rate Gravity (MARG) tracking as a full body motion tracking 

system.  [Ref. 7] 

With recent advances in micro-machined and miniaturized technology, inertial 

tracking has become an affordable and accurate option.  Unlike the other sensing 

technologies discussed, inertial trackers contain no inherent latency and therefore should 

be more accurate than their counterparts. 

With inertial tracking, angular rate data is integrated to determine segment 

orientation.  If this data were used alone, error would be introduced over time as bias and 

drift errors accumulated.  However with the addition of accelerometers to sense the 

gravity vector and magnetometers to sense the local magnetic field, the inertial signal can 

be corrected and the errors minimized.  The MARG sensors developed by Bachmann 

contain a separate accelerometer, rate sensor and magnetometer for each coordinate axis. 

One drawback to the system developed by Bachmann is that only orientation is 

tracked, not position.  Mobile platforms, such as submarines, integrate accelerometer data 

to obtain position, but their accelerometers are much larger and significantly more 

expensive.  Currently, such techniques may only be applied for short time periods with 

the small, low-grade sensors used for MARG tracking before drift introduces significant 

error.  [Ref. 23][Ref. 24] 
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G. SUMMARY 

This chapter discussed the Virtual Reality Modeling Language (VRML), and 

examined the powerful combination of VRML and Java working together.  The 

Humanoid Animation 1.1 Specification and its canonical exemplar, Nancy.wrl were also 

discussed.  Finally, a brief overview of current human body motion tracking was 

provided, including the method chosen for this research, inertial and magnetic (MARG) 

tracking developed at the Naval Postgraduate School. 
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V. INITIAL DEVELOPMENT EFFORTS 

 

A. INTRODUCTION 

This chapter discusses the challenges involved in reducing the complexity of laser 

scan output, translating between file formats and partitioning the resulting data cloud into 

body segments.  Constructing an avatar from these body segments is then examined.  

Finally, the process of making Java and VRML work together, and incorporating 

networked, real-time control is discussed. 

 

B. HANDLING LASER SCAN DATA 

1. Reducing Laser Scan Output Complexity 

The first challenge of this research was to simplify the laser scan data set.  The 

raw output data consists of approximately 150,000 polygons.  When translated into 

ASCII text, the size of the file is over 50 megabytes.  This large data set is extremely 

unwieldy.  If it could be rendered at all, use of a model of this nature in 3D worlds under 

current technology would be extremely inefficient, resulting in very slow frame rates.  

Figure 15 shows the original, unreduced laser scan output. 
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Figure 14.  Initial Laser Scan Output of the Author (150,000 Polygons). 

For realistic rendering of humans in most applications, only 4000 to 5000 polygons are 

necessary.  Texture mapping further assists in lowering the required polygon count, as the 

overlying texture adds greater surface detail. 

Laser scan output is in *.ply format, an Alias/Wavefront file type.  Since this 

format is open source, it is possible to write custom polygon reduction algorithms.  As 

the scope of this thesis is avatar construction and real-time avatar control, it was 
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considered beyond the scope of this research to create a custom algorithm for polygon 

reduction.  Instead, a proprietary software package from Cyberware Laboratories called 

“Decimate” was used.  The Decimate software can reduce model polygon count from the 

initial number of 150,000 to whatever the user specifies [Ref. 26].  For this research, a 

target polygon count of 10,000 polygons was used.  Polygon reduction from 150,000 

polygons to 10,000 polygons was completed in less than 15 seconds on a Pentium III, 

550-megahertz system.  The resulting ASCII text file size was approximately 750 

kilobytes. 

 

2. Translating Between Files 

The *.ply file format is intended for animation software packages.  For real-time 

rendering into 3D worlds a different file format is needed.  Specifically, the Virtual 

Reality Modeling Language (VRML) format (*.wrl) was chosen for reasons discussed in 

Chapter III.   

As was the case for polygon reduction, custom translators could be written since 

*.ply is open source.  Again, file translation was considered beyond the scope of this 

research.  Additionally, the Decimate software used for polygon reduction includes 

several file translators, including VRML.  The disadvantage in using the VRML 

translator that comes with Decimate was that original texture information is lost when 

converting from *.ply to *.wrl format, thus, if texture mapping is desired it must be 

supplied by the modeler.  Figure 16 shows the reduced, VRML model obtained from 

translation. 
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Figure 15.  Translated VRML Avatar (10,000 Polygons). 

Two things should be noted about Figure 16.  The first is the lack of texture 

information, for the reason discussed in the preceding paragraph.  The second item to 

note is that the figure is one complete piece.  That is, the figure is not articulated or 

segmented in any way.  The challenge of partitioning the avatar into appropriate body 

segments is discussed next. 

 

3. Segmenting The Avatar 

For a human model to be able to mimic the full range of motion of a human, it 

must be segmented in the appropriate places.  Three approaches were considered for 

avatar segmentation. 
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The first approach that was considered is completely automated.  If it is possible 

to infer the location of important body joints from the model data, then code may be 

written to extract such information and apportion body segments appropriately.  One 

possibility is that when the individual gets scanned, they stand in such a way so that 

important joints are bent past some critical angle.  The segmentation code could then look 

for sufficient change in the direction of surface normals, thereby indicating a bent joint.  

Since the initial laser scan was performed at the beginning of this research there were no 

preferences for scan position, and thus all joints are straight in the model.  This being the 

case, completely automatic joint selection was not feasible. 

Partial automation was considered next.  If average body segment lengths were 

known, it would be possible to insert joints automatically at the average locations.  The 

drawback to this method is accuracy.  Joint locations can vary widely from subject to 

subject, so models using this method would be susceptible to inaccurate segmentation, 

resulting in unbelievable avatars.  Since one of the major objectives of this research is to 

provide realistic, believable avatars this method of partial automation was discarded. 

The final method of avatar segmentation that was considered, and ultimately used 

in this research, was completely manual.  An operator imports the laser scan data into 

3D-rendering capable software, manually selects the segments, and then exports the 

virtual body parts for use as avatar building blocks.  A disadvantage to this method is that 

it is time consuming.  Several hours are required for an operator to segment a model.  

Another disadvantage is that model segmentation is somewhat arbitrary.  One operator 

may segment a model very differently than another operator, especially if joint position is 

unclear, as in the initial scan.  Lastly, this method requires operators trained in the use of 

whichever software package is selected. 

The software package used for avatar segmentation in this research was Maya, 

from Alias/Wavefront.  Maya has been used extensively in the film industry to provide 

lifelike animation, and is adept at handling 3D objects [Ref. 27].  Maya can import and 

export *.obj files, allowing for segmentation processing.  A file translator provided with 

Cyberware’s Decimate was used to convert the polygon-reduced laser scan from *.ply to 

*.obj format.  The *.obj file was then imported into Maya, and 3D selection of body 
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segments was performed (Figure 17).  After each body segment was selected, it was 

exported as a separate *.obj file.  Unfortunately, at the time of this research Decimate did 

not contain translators to convert directly from *.obj to *.wrl (VRML), so it was 

necessary to first convert each body segment from *.obj to *.ply, then *.ply to *.wrl. 

 
Figure 16.  Reduced Laser Scan Imported Into Maya. 

 

C. CONSTRUCTING THE AVATAR 

After segmentation in Maya, the model consisted of several VRML files, one file 

for each body segment.  Each file contains VRML Shape nodes, with geometry data 

called an “IndexedFaceSet.”  This geometry data contained x-y-z coordinates for each 

point to be rendered, along with indexing information indicating the order in which to 

render the points.  Order is important because VRML supports back-face culling for 

efficiency.  Back-face culling is an operation performed by rendering engines that only 

draws the external faces of objects.  Since observer viewpoint is seldom concerned with 
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internal views of a “solid” object, drawing only the external sides can significantly reduce 

the processing workload, and result in higher frame rates.  VRML, like most current 3D 

rendering engines, determines which sides are external and which are internal by the 

order in which points are drawn. 

The Humanoid Animation Specification 1.1 (H-Anim 1.1) canonical example 

Nancy.wrl, created by Cindy Ballreich, was used (see Figures 10-13).  Nancy’s segments 

were constructed using indexed face sets and indexing data.  To construct the laser-

scanned avatar, the information (x-y-z coordinates and indexing data) from each of 

Nancy’s original segments was replaced with the corresponding information from each of 

the segment VRML files exported from Maya.  Each of the new segments was scaled, 

and connected together by appropriate rotation and translation.  The result is an 

articulated VRML/H-Anim 1.1 avatar originating from a laser scan, capable of scripted 

behaviors.  As discussed earlier, texture information is not present due to inadequacies 

with Cyberware Laboratory’s *.ply to *.wrl translator, so Nancy’s default colors were 

used initially as shown in Figure 18. 

 
Figure 17.  Initial VRML/H-Anim 1.1 Avatar From Laser-Scan (Untextured). 
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Two things should be noted about Figure 18.  The first is that there are no 

polygons above the hairline.  The physical characteristics of hair yield a poor return 

signal during the laser-scan process, resulting in the loss of coordinate information for the 

portions of the skull covered by hair.  The second thing to note is the gap appearing 

between the right arm and the torso.  Due to the posture of the human subject during the 

scanning process, the arms effectively blocked the laser signal from reaching the left and 

right sides of the torso, resulting in loss of coordinate information.  Similar situations 

exist with other body segments, such as the legs. 

Both the hair-interference and segment-shadowing problems may be compensated 

for using standard 3D editing techniques, either using popular animation programs such 

as Maya or directly by point editing in VRML.  The segment-shadowing problem may 

also be minimized by placing the human model in a posture that maximizes exposed 

surface area before the laser scan begins. 

A third problem with the avatar, which is not immediately apparent from Figure 

18, is one of joint visual connectivity.  Since the avatar was obtained from a static laser 

scan, when segments are moved from the initial scan position “tears” can be seen at the 

joints where segments are connected.  For example, consider a human arm.  When 

someone moves a forearm in the physical world, the skin, muscles and tendons stretch to 

accommodate the varying positions of the forearm relative to the upper arm.  In the final 

avatar created by this research, when segments move relative to each other the surface 

topology does not stretch or otherwise compensate for varying segment positions, 

resulting in visual tearing between segments during some avatar movements. 

For added realism, a standard green camouflage pattern was applied to each 

avatar segment, with the exception of the head, hands and feet.  For the head, a different 

process was used. 

3Q, incorporated [Ref. 28] specializes in optical triangulation scanning of the 

human face.  They have booths in some software entertainment stores that perform 

digitization of faces.  The digitized face can then be imported into a variety of popular 

computer games, and also contains a VRML rendition.  This VRML output was used to 
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replace the existing avatar skull obtained from the laser-triangulation scan performed by 

Cyberware Laboratories. 

The end product is a fully articulated, texture-mapped avatar that is capable of 

scripted movement via an international standard, H-Anim 1.1.  See Figure 19. 

 
Figure 18.  Texture Mapped, Articulated Avatar Capable of H-Anim 1.1 Scripted 

Movement. 

 

D. USING JAVA TO PROVIDE REAL-TIME NETWORKED CONTROL 

Although capable of scripted movement, the final product must also be 

controllable via network updates.  Adding the open-source DIS-Java-VRML [Ref. 29] 

package to Java makes communication between VRML and Java possible.  In this case, 

VRML renders the 3D scene and Java handles the networking.  Refer to chapter 3 for an 

in-depth discussion on how VRML and Java can work together. 

The network protocol chosen for this implementation is the User Datagram 

Protocol (UDP).  UDP is connection-less. Although not as reliable it is faster than 
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Transmission Control Protocol/Internet Protocol (TCP/IP) [Ref. 30].  Strict packet 

accountability was deemed unnecessary for this research, since segment orientations are 

typically updated at approximately 100 hertz [Ref. 7]. 

Two UDP approaches were considered.  The first approach examined was the 

built-in UDP functionality provided by DIS-Java-VRML, which provides an easy-to-use 

UDP class called the Protocol Data Unit (PDU).  Twenty-seven PDU fields are defined in 

the 1995 IEEE Standard for DIS-Application Protocols [Ref. 31].  Since the only 

information needed to be passed is a field containing segment identification, and four 

other fields containing orientation information the PDU was dismissed as being too 

heavyweight and therefore inefficient for this application.  The second approach involved 

custom packet design.  Although this technique involved more coding and design, it was 

ultimately selected due to its superior efficiency, since a packet could consist of only five 

fields versus the twenty-seven fields contained in the PDU. 

The final code consists of the following files:  JavaDutton.wrl (the file containing 

the VRML content), greenCamo.jpg (contains the green camouflage texture map), 

clone.gif (the face picture to be texture mapped onto the avatar’s face), 

ScriptNodeFieldControl.java (VRML/Java interface), ClientProgram.java (receives UDP 

segment orientation updates) and QuatToEuler.java (converts the quaternions received 

from the MARG sensors to Euler angles for VRML use). 

An additional class, ServerProgram.java, was written to support testing.  

Unfortunately, at the time of this writing the body tracking software developed at the 

Naval Postgraduate School only outputs to text files [Ref. 7].  In anticipation of network 

updates, the ServerProgram class simulates direct networking by parsing a pre-recorded 

body tracking session, wrapping the data into a UDP packet, and sending it over the 

network.  When the ClientProgram class receives data over the network, it is unaware 

that the source was originally a text file.  One drawback to this method is speed:  parsing 

the data from a text file slows down the update process considerably, resulting in an 

animation playback that is an order of magnitude slower than animation being driven by 

pure network updates. 
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To run the networked VRML avatar, all of the java class files must be in the same 

directory as JavaDutton.wrl, greenCamo.jpg and clone.gif.  Assuming a VRML viewer 

plug-in has been installed in the web browser, the user double-clicks on JavaDutton.wrl.  

The initial 3D scene is rendered, and ScriptNodeFieldControl is automatically called.  

ScriptNodeFieldControl accepts and initializes the avatar segment nodes along with a text 

message that is rendered in front of the avatar.  ClientProgram is automatically called by 

ScriptNodeFieldControl as a separate thread, which then listens for UDP packet updates.  

When users are ready to receive network updates, they click on the text in front of the 

avatar in the VRML scene.  The text message changes, and body segment orientations are 

continuously updated from an array containing the most recent orientation data.  For 

testing, ServerProgram was started, with a command line argument containing the 

filename of the pre-recorded body tracking data.  ServerProgram parses the input file, 

calls QuatToEuler to convert quaternions to equivalent Euler angles, and sends the data 

over the network in the form of UDP packets.  When ClientProgram receives a UDP 

packet, it unwraps the packet and calls an update method in ScriptNodeFieldControl, 

which then updates the array containing the most recent segment orientations.  The next 

time the VRML scene graphics are refreshed, these most recent orientations are read from 

the array, thus updating the avatar’s motion. 

 

E. SUMMARY 

This chapter examined the process used to reduce the polygon count of the initial 

laser scan, translate the data into various file formats, and partition the data into body 

segments.  Additionally, avatar construction from these body segments was discussed.  

Finally, the process of making Java and VRML communicate with each other, and 

providing for networked, real-time control was examined. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

 

A. GENERAL THESIS CONCLUSIONS 

Construction of an articulated avatar from laser scans for use in 3D networked 

virtual environments has been achieved.  The resulting avatar resembles the original 

human to a scale of millimeters and runs efficiently on current standard computer desktop 

systems.  The 3D engine can be user and programmer-friendly, platform independent and 

open-source.  Avatars can be driven by either scripted behaviors, or by real-time control 

via networks.   

 

B. SPECIFIC CONCLUSIONS AND RESULTS 

1. Constructing Anatomically Accurate Avatars  

The H-Anim 1.1 exemplar Nancy.wrl, created by Cindy Ballreich, was used as the 

foundation and served as inspiration for this project.  By replacing Nancy’s coordinate 

and indexing data with laser scan data, exact anatomical avatars can be constructed that 

conform to an international human animation specification.   

 

2. Flexible Avatar Control 

Avatar control is possible by either programmed or real-time input.  Programmed, 

or scripted, input follows the H-Anim 1.1 specification.  Real-time input may be 

accomplished over a network, with control devices sending UDP packets containing limb 

segment orientation updates.  Specifically, real-time networked control via wireless 

motion tracking sensors developed at the Naval Postgraduate School was implemented as 

proof-of-concept. 

 

3. Source Code is Platform-Independent and Open-Source 

By restricting computer source code to VRML and Java, the final product 

produced by this research will run on various platforms and operating systems via 
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popular web browsers.  All source code is open-source, allowing for both inspection and 

enhancement as technology progresses. 

 

4. Simple 3D Authoring is Combined With Powerful Programming 

Capability 

VRML is a high-level, easily understood 3D authoring language.  Java is a 

powerful and widely used programming language.  Highly complex results may be 

obtained when the two are combined, producing a product that is more than the sum of its 

parts.  With gains in computing technology, both Java and VRML are approaching run-

time speeds previously enjoyed only by low-level programming languages, allowing easy 

creation of intricate scenes and behaviors through relatively simple interfaces. 

 

C. LESSONS LEARNED 

The laser scan of the author was performed at the beginning of this research.  

During this thesis it became clear that the scan pose was less than optimum.  Not only 

were body segments masking other portions of the body from the laser signal, but also all 

of the limb segments were straight, making it difficult to determine exact joint position 

during the segmentation process.  With the knowledge gained during this research, it is 

recommended that future avatar scans be performed differently.  First, limbs should be 

positioned in such a way as to minimize masking other portions of the body from the 

laser signal.  Second, all of the major joints should be bent as close to 90 degrees as 

possible.  Not only does this provide clear indication of joint location for manual 

segmentation, but it also provides a clear division between limb segments for possible 

automated segmentation. 

 

D. RECOMMENDATIONS FOR FUTURE WORK 

1. Automating Avatar Segmentation and Construction 

Segmenting the avatar into appropriate body segments for articulation, and then 

constructing the avatar from these segments was by far the most time-intensive 
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component of this research.  Advanced knowledge of third-party animation software, in 

this case Maya, was required.  Since segmentation was done manually, accurate and 

consistent joint separations were both difficult and time-consuming.  If the initial scan 

pose is modified as discussed earlier, it should be possible to automatically determine 

joint location, based either on the relatively rapid change in surface normal direction or 

some other algorithm.  These automatically generated segments could then be placed 

together using an avatar template.  In this manner, articulated avatars could be 

constructed in a few minutes instead of a few days, allowing for rapid content creation. 

 

2. Updating File Translators to Retain Texture Information 

During the whole body laser scan, texture information as well as x-y-z coordinate 

information is obtained.  Unfortunately, as discussed in Chapter V, the current file 

translators provided by Cyberware lose texture information when converting scan data to 

VRML.  Cyberware is aware of this problem, and may resolve this issue in a later 

software release.  Alternatively, since laser scan output is in open-source *.ply format, 

custom translators that properly retain texture information could be written.  One possible 

approach would be to include custom file translation that retains texture information with 

the automatic avatar segmentation and construction process discussed earlier. 

 

3. Keep Joints Connected in All Positions  

Since the avatar was created from a static model, visual tearing occurs when the 

relative positions between limb segments are changed.  This detracts from avatar realism 

and overall appearance.  An important improvement would be to use displacers or meshes 

to keep limb segments cohesive through all ranges of motion.  Some advanced features of 

VRML support such techniques [Ref. 18]. 

 

4. Increase Behavior and Motion Libraries 

Since the capability of scripted avatar control is provided via H-Anim 1.1, an 

extensive library of ready-to-use behaviors would be of great benefit to virtual 
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environment designers.  Depending on the target application, pre-existing complicated 

behaviors could be imported with little or no significant extra development time, 

allowing for more rapid and believable content creation. 

 

5. Update Existing Body-Tracking Code 

Currently the body-tracking code, written by Professor Eric Bachmann, can only 

record limb segment orientation updates to text files, and not to a network [Ref. 7].  For 

testing, this research parses a pre-recorded motion capture text file, and then sends update 

packets over the network.  Modifying the body-tracking software to update to the 

network directly and thus eliminating file input/output could result in a significant 

increase in efficiency.  Higher frame rates and virtual environments capable of supporting 

many more users would be possible. 

 

6. Construct Avatar in Other Programming Languages 

Open-source, platform-independence, and ease of authoring were major tenets of 

this research.  Depending on the target application, programmers may have different 

goals.  One way to meet different criteria is to construct an avatar from laser scan data in 

various 3D programming languages.  Some possible candidates are Java3D [Ref. 32], 

OpenGL [Ref. 33] or DirectX [Ref. 34]. 

 

E. SUMMARY 

This research has demonstrated an efficient, cost-effective method of converting 

laser scan data into realistic, dimensionally accurate avatars.  The avatars are open-source 

and platform independent, and can be controlled via either programmed behaviors or by 

real-time network updates.  Real-time avatar control was developed using the Magnetic 

Angular Rate Gravity (MARG) sensors developed at the Naval Postgraduate School.   
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